Ky Fan Combinatorial Theorem and applications

Frédéric Meunier

June 30th, 2015

Outline

Ky Fan's combinatorial theorem and three applications:

1. Covering of the sphere.
2. Coloring of Kneser graphs.
3. Splitting necklaces.

Combinatorial Ky Fan’s theorem

Figure: Ky Fan, 1914-2010

Simplex

A simplex is the convex hull of affinely independent points.

Point

Triangle

Edge

Tetrahedron

Etc.

Simplicial complex

K is a simplicial complex if it is a collection of simplices such that

- if τ is a face of $\sigma \in \mathrm{K}$, then $\tau \in \mathrm{K}$.
- the intersection of any two simplices is either empty or a face of both.

Alternating simplices

Let K be a simplicial complex and let
$\lambda: V(\mathrm{~K}) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm m\}$.
d-simplex σ is positively alternating if
$\lambda(V(\sigma))$ of the form $\left\{j_{0},-j_{1}, \ldots,(-1)^{d} j_{d}\right\}$ with $1 \leq j_{0}<j_{1}<\cdots<j_{d}$

Combinatorial Ky Fan’s theorem

Theorem

Let T be a triangulation of the d-sphere S^{d} that is centrally symmetric. Let $\lambda: V(T) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm m\}$ be a labeling such that

- $\lambda(-v)=-\lambda(v)$ for all $v \in V(T)$
- There are no edges uv of T such that $\lambda(u)+\lambda(v)=0$.

Then there is at least one positively alternating d-simplex.
d-simplex is positively alternating if

$$
\lambda(V(\sigma)) \text { of the form }\left\{j_{0},-j_{1}, \ldots,(-1)^{d} j_{d}\right\} \text { with } 1 \leq j_{0}<j_{1}<\cdots<j_{d}
$$

Combinatorial Ky Fan's theorem

Combinatorial Stokes formula

$\beta^{-}(\mathrm{K})$: \# negatively alternating triangles $\beta^{+}(\mathrm{K})$: \# positively alternating triangles
$\beta^{-}(\partial \mathrm{K})$: \# negatively alternating edges on the boundary

$\beta^{-}(\mathrm{K})+\beta^{+}(\mathrm{K})=\beta^{-}(\partial \mathrm{K}) \quad \bmod 2$.

Combinatorial Stokes formula

K pseudomanifold of dimension d.
Let $\lambda: V(\mathrm{~K}) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm m\}$ be s.t. there are no edges $u v$ of K with $\lambda(u)+\lambda(v)=0$.
$\beta^{-}(\mathrm{K})$: number of negatively alternating d-simplices
$\beta^{+}(\mathrm{K})$: number of positively alternating d-simplices
$\beta^{-}(\partial \mathrm{K})$: number of negatively alternating ($d-1$)-simplices on the boundary

$$
\beta^{-}(\mathrm{K})+\beta^{+}(\mathrm{K})=\beta^{-}(\partial \mathrm{K}) \quad \bmod 2
$$

Combinatorial Ky Fan's theorem

Theorem
Let T be a triangulation of the d-sphere S^{d} that is centrally symmetric. Let $\lambda: V(\mathrm{~T}) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm m\}$ be a labeling such that

- $\lambda(-v)=-\lambda(v)$ for all $v \in V(T)$
- There are no edges uv of T such that $\lambda(u)+\lambda(v)=0$.

Then there is at least one positively alternating d-simplex.

Application in topology

Theorem

Let A_{1}, \ldots, A_{m} be m closed subsets of S^{d} satisfying the following conditions:

- None of them contain antipodal points.
- $\bigcup_{i=1}^{m}\left(A_{i} \cup\left(-A_{i}\right)\right)=S^{d}$.

Then there exist $d+1$ integers $1 \leq j_{0}<\cdots<j_{d} \leq m$ such that

$$
A_{j_{0}} \cap\left(-A_{j_{1}}\right) \cap \cdots \cap\left((-1)^{d} A_{j_{d}}\right) \neq \emptyset .
$$

Generalization of the Borsuk-Ulam theorem.
If f is a continuous $S^{d} \rightarrow \mathbb{R}^{d}$ map, then there is $\boldsymbol{x} \in S^{d}$ such that $f(\boldsymbol{x})=f(-\boldsymbol{x})$.

Tucker's lemma

Lemma

Let T be a triangulation of the d-sphere S^{d} that is centrally symmetric. Let $\lambda: V(T) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm m\}$ be a labeling such that

- $\lambda(-v)=-\lambda(v)$ for all $v \in V(T)$
- There are no edges uv of T such that $\lambda(u)+\lambda(v)=0$.

Then $m \geq d+1$.

Octahedral Ky Fan lemma

Lemma
Let $\lambda:\{+,-, 0\}^{n} \backslash\{0\} \rightarrow\{ \pm 1, \ldots, \pm m\}$ s.t.

- $\lambda(-\boldsymbol{x})=-\lambda(\boldsymbol{x})$ for every \boldsymbol{x}
- $\lambda(\boldsymbol{x})+\lambda(\boldsymbol{y}) \neq 0$ for every $\boldsymbol{x} \preceq \boldsymbol{y}$

Then there is at least one positively alternating n-chain.

Positively alternating n-chain: $\boldsymbol{x}^{1} \preceq \cdots \preceq \boldsymbol{x}^{n}$ with

$$
\begin{gathered}
\lambda\left(\left\{\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{n}\right\}\right)=\left\{j_{1},-j_{2}, \ldots,(-1)^{n-1} j_{n}\right\} \quad \text { and } \quad 1 \leq j_{1}<j_{2}<\cdots<j_{n} . \\
\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \preceq \boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \quad \text { if } \quad x_{i} \neq 0 \Rightarrow y_{i}=x_{i}
\end{gathered}
$$

Proof

$\star\{+,-, 0\}^{n} \backslash\{\mathbf{0}\}$ is in one-to-one correspondence with the vertices of $\operatorname{sd}\left(\partial \square^{n}\right)$.

* Chains correspond to simplices.
\star Apply the combinatorial Ky Fan's theorem.

Octahedral Tucker lemma

Lemma
Let $\lambda:\{+,-, 0\}^{n} \backslash\{\mathbf{0}\} \rightarrow\{ \pm 1, \ldots, \pm m\}$ s.t.

- $\lambda(-\boldsymbol{x})=-\lambda(\boldsymbol{x})$ for every \boldsymbol{x}
- $\lambda(\boldsymbol{x})+\lambda(\boldsymbol{y}) \neq 0$ for every $\boldsymbol{x} \preceq \boldsymbol{y}$

Then $m \geq n$.

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \preceq \boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \quad \text { if } \quad x_{i} \neq 0 \Rightarrow y_{i}=x_{i}
$$

Application: Combinatorial proof of the
Lovász-Kneser theorem

Kneser graphs

n, k two integers s.t. $n \geq 2 k$.

Kneser graph $\mathrm{KG}(n, k)$:

$$
\begin{aligned}
& V(\mathrm{KG}(n, k))=\binom{[n]}{k} \\
& E(\mathrm{KG}(n, k)))=\left\{A B: A, B \in\binom{[n]}{k}, A \cap B=\emptyset\right\}
\end{aligned}
$$

Lovász-Kneser theorem

Theorem
$\chi(\mathrm{KG}(n, k))=n-2 k+2$.
Original proof by Lovász in 1979, using algebraic topology.
$\chi(\mathrm{KG}(n, k)) \leq n-2 k+2$ (easy: explicit coloring).

Matoušek proposed in 2003 a combinatorial (yet still topological) proof.

Matoušek's proof

$\star c:\binom{[n]}{k} \rightarrow[t]$ proper coloring of $\operatorname{KG}(n, k)$ with t colors.

* Extension for any $U \subseteq[n]: c(U)=\max \{c(A): A \subseteq U,|A|=k\}$.
$\star \boldsymbol{x}^{+}=\left\{i: x_{i}=+\right\}$ and $\boldsymbol{x}^{-}=\left\{i: x_{i}=-\right\}$

$$
\star \lambda(\boldsymbol{x})= \begin{cases}|\boldsymbol{x}| & \text { if }|\boldsymbol{x}| \leq 2 k-2, \min \left(\boldsymbol{x}^{+}\right)<\min \left(\boldsymbol{x}^{-}\right) \\ -|\boldsymbol{x}| & \text { if }|\boldsymbol{x}| \leq 2 k-2, \min \left(\boldsymbol{x}^{-}\right)<\min \left(\boldsymbol{x}^{+}\right) \\ c\left(\boldsymbol{x}^{+}\right)+2 k-2 & \text { if }|\boldsymbol{x}| \geq 2 k-1, c\left(\boldsymbol{x}^{+}\right)>c\left(\boldsymbol{x}^{-}\right) \\ -c\left(\boldsymbol{x}^{-}\right)-2 k+2 & \text { if }|\boldsymbol{x}| \geq 2 k-1, c\left(\boldsymbol{x}^{-}\right)>c\left(\boldsymbol{x}^{+}\right)\end{cases}
$$

Use the octahedral Tucker lemma

Apply the following lemma with $m=t+2 k-2$.

Lemma
Let $\lambda:\{+,-, 0\}^{n} \backslash\{0\} \rightarrow\{ \pm 1, \ldots, \pm m\}$ s.t.

- $\lambda(-\boldsymbol{x})=-\lambda(\boldsymbol{x})$ for every \boldsymbol{x}
- $\lambda(\boldsymbol{x})+\lambda(\boldsymbol{y}) \neq 0$ for every $\boldsymbol{x} \preceq \boldsymbol{y}$

Then $m \geq n$.

We have thus $t \geq n-2 k+2$, as required.

Zig-zag theorem

Replace Tucker by Ky Fan (existence of the alternating chain), and get more.

Let $K_{q, q}$ denote the complete bipartite graph with q vertices on each side.

Theorem (Simonyi-Tardos 2006)

Suppose KG($n, k)$ be colored properly with t colors. Then it contains a colorful copy of $K_{\left\lfloor\frac{n-2 k+2}{2}\right\rfloor,\left\lceil\frac{n-2 k+2}{2}\right\rceil}$ such that the colors alternate on both side.

Let $K_{q, q}^{*}=K_{q, q} \backslash M$, where M is a perfect matching.
Theorem (Chen 2010)
Suppose $K G(n, k)$ be colored properly with $n-2 k+2$ colors. Then it contains a colorful copy of $K_{n-2 k+2, n-2 k+2}^{*}$.

Homomorphism of Kneser graphs

Let G and H be two graphs.
$f: V(G) \rightarrow V(H)$ is a graph homomorphism if $f(u) f(v) \in E(H)$ whenever $u v \in E(G)$.

Conjecture (Stahl 1976)
There exists a graph homomorphism $\mathrm{KG}(n, k) \rightarrow \mathrm{KG}\left(n^{\prime}, k^{\prime}\right)$ if and only if $n^{\prime} \geq q n-2 \ell$, where $k^{\prime}=q k-\ell$.

Existence of a graph homomorphism $\mathrm{KG}(n, k) \rightarrow \mathrm{KG}(n-2, k-1)$: proved by Stahl in 1976. Case $n=2 k+1$ and $n^{\prime}=2 k^{\prime}+1$: also proved by Stahl in 1996.

Generalization: Kneser hypergraphs

n, k, r three integers s.t. $n \geq r k$.
Kneser hypergraph $\mathrm{KG}^{r}(n, k)$:

$$
V\left(\mathrm{KG}^{r}(n, k)\right)=\binom{[n]}{k}
$$

$$
E\left(\mathrm{KG}^{r}(m, k)\right)=\left\{\left\{A_{1}, \ldots, A_{r}\right\}: A_{i} \in\binom{[n]}{k}, A_{i} \cap A_{j}=\emptyset \text { for } i \neq j\right\}
$$

Chromatic number

Theorem (Alon-Frankl-Lovász theorem)

$$
\chi\left(\mathrm{KG}^{r}(m, \ell)\right)=\left\lceil\frac{m-r(\ell-1)}{r-1}\right\rceil
$$

All proofs:

- if true for r_{1} and r_{2}, then true for $r_{1} r_{2}$.
- true when r is prime.

Original proof for the case r prime: similar as for Lovász-Kneser theorem, with deepest algebraic topology .

A combinatorial proof

Ziegler (2003) proposed a combinatorial proof via a Z_{p}-Tucker's lemma.

Assume p prime and $\mathrm{KG}^{p}(m, \ell)$ properly colored with t colors.
$Z_{p}=p$ th roots of unity
With the help of coloring, build a map

$$
\begin{aligned}
\lambda:\left(Z_{p} \cup\{0\}\right)^{m} \backslash\{\mathbf{0}\} & \longrightarrow Z_{p} \times[t+p \ell-2] \\
\boldsymbol{x} & \longmapsto \underbrace{s(\boldsymbol{x})}_{\text {sign absolute value }}, \underbrace{v(\boldsymbol{x})})
\end{aligned}
$$

satisfying condition of a " Z_{p}-Tucker" lemma

- $\lambda(\omega \boldsymbol{X})=\omega \lambda(\boldsymbol{x})$ for $\omega \in Z_{p}$
- condition on $\left\{\lambda\left(\boldsymbol{x}^{1}\right), \ldots, \lambda\left(\boldsymbol{x}^{p}\right)\right\}$ when $\boldsymbol{x}^{1} \preceq \cdots \preceq \boldsymbol{x}^{p}$.

Second point satisfied by coloring condition: no p adjacent vertices get the same color.
Thus, $(p-1)(t-1)+p \ell-1 \geq m$, i.e.

$$
t \geq \frac{m-p(\ell-1)}{p-1}
$$

Application: the splitting necklace theorem

Two thieves and a necklace

n beads, t types of beads, a_{i} (even) beads of each type.
Two thieves: Alice and Bob.

Beads fixed on the string.

Fair splitting $=$ each thief gets $a_{i} / 2$ beads of type i

The splitting necklace theorem

Theorem (Alon, Goldberg, West, 1985-1986)
There is a fair splitting of the necklace with at most t cuts.

t is tight

t cuts are sometimes necessary:

Pálvölgyi's proof

\star define $\operatorname{alt}(\boldsymbol{x})$ to be the number of sign changes when reading $\boldsymbol{x} \in\{+,-, 0\}^{n}$ from left to right (0 doesn't count).
\star define $h(\boldsymbol{x})$ to be $\max \{\operatorname{alt}(\boldsymbol{y}): \boldsymbol{y} \succeq \boldsymbol{x}\}$.
\star define $s(\boldsymbol{x})$ to be the first component of \boldsymbol{y} realizing the maximum (well-defined!).
$\star \lambda(\boldsymbol{x})= \begin{cases}s(\boldsymbol{x}) h(\boldsymbol{x}) & \text { if } h(\boldsymbol{x})>t \\ +\mathrm{i} & \text { if } h(\boldsymbol{x}) \leq t \text { and Alice gets }>a_{i} / 2 \text { beads of type } i \\ -\mathrm{i} & \text { if } h(\boldsymbol{x}) \leq t \text { and Bob gets }>a_{i} / 2 \text { beads of type } i \\ & \text { and choose the smallest such } i\end{cases}$

Use the octahedral Tucker Iemma

Apply the following lemma with $m=n-1$ (maximum possible number of sign changes in a \boldsymbol{y}).
Lemma
Let $\lambda:\{+,-, 0\}^{n} \backslash\{0\} \rightarrow\{ \pm 1, \ldots, \pm m\}$ s.t.

- $\lambda(-\boldsymbol{x})=-\lambda(\boldsymbol{x})$ for every \boldsymbol{x}
- $\lambda(\boldsymbol{x})+\lambda(\boldsymbol{y}) \neq 0$ for every $\boldsymbol{x} \preceq \boldsymbol{y}$

Then $m \geq n$.

Contradiction. Such a λ doesn't exist.
\Longrightarrow Existence of \boldsymbol{x} with $h(\boldsymbol{x}) \leq t$ s.t. both Alice and Bob get $\leq a_{i} / 2$ beads of type $i, \forall i$.
\Longrightarrow Existence of $\boldsymbol{y} \succeq \boldsymbol{x}$ providing a fair splitting.

Open questions

* Is there an elementary proof of the splitting necklace theorem?
* What is the complexity of computing a fair splitting?

Generalization

q thieves.
Fair splitting $=$ each thief gets a_{i} / q beads of type i
Theorem (Alon 1987)
There is a fair splitting of the necklace with at most $(q-1) t$ cuts.

Open questions

\star Is there a combinatorial proof using the Z_{p}-Tucker lemma?

* Is there an elementary proof of the splitting necklace theorem?
* What is the complexity of computing a fair splitting?

