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Outline

Ky Fan’s combinatorial theorem and three applications:

1. Covering of the sphere.
2. Coloring of Kneser graphs.
3. Splitting necklaces.



Combinatorial Ky Fan’s theorem



Figure: Ky Fan, 1914-2010



Simplex

A simplex is the convex hull of affinely independent points.

Point Edge
Triangle Tetrahedron

Etc.



Simplicial complex
K'is a simplicial complex if it is a collection of simplices such
that
e if risaface of o € K, then 7 € K.

¢ the intersection of any two simplices is either empty or a
face of both.




Alternating simplices

Let K be a simplicial complex and let
A V(K) = {+1,+2,...,+m}.

d-simplex o is positively alternating if

M V(o)) of the form {jo, —js, ..., (=1) g} with 1 < jo < ji < --- < jgy



Combinatorial Ky Fan’s theorem

Theorem

Let T be a triangulation of the d-sphere S that is centrally
symmetric. Let A : V(T) — {£1,£2,...,£m} be a labeling
such that

e \N(—=Vv)=—=X\(v) forallv e V(T)
e There are no edges uv of T such that A\(u) + A\(v) = 0.
Then there is at least one positively alternating d-simplex.

d-simplex is positively alternating if

MV(0)) of the form {jo, —js, ..., (—=1)%jgt with 1 < o < jy < -+ <Jg



Combinatorial Ky Fan’s theorem







Combinatorial Stokes formula

B~ (K): # negatively
alternating triangles

BT (K): # positively
alternating triangles
B~ (0K): # negatively
alternating edges on
the boundary

B (K) + BT (K) = 3~ (0K) mod 2.



Combinatorial Stokes formula

K pseudomanifold of dimension d.

Let A : V(K) — {£1,£2,...,+m} be s.t. there are no edges uv of K
with A(u) + A(v) = 0.

B~ (K): number of negatively alternating d-simplices

BT (K): number of positively alternating d-simplices

B8~ (0K): number of negatively alternating (d — 1)-simplices on the
boundary

B7(K) + BT (K)=B7(0K)  mod2







Combinatorial Ky Fan’s theorem

Theorem
Let T be a triangulation of the d-sphere S that is centrally

symmetric. Let A : V(T) — {£1,£2,...,£m} be a labeling
such that

e \N(—Vv)=—=X\(v) forallv e V(T)
e There are no edges uv of T such that A\(u) + A\(v) = 0.
Then there is at least one positively alternating d-simplex.



Application in topology

Theorem

Let A1, ...,Am be m closed subsets of S9 satisfying the
following conditions:

e None of them contain antipodal points.
o UZ{(AU(-A)) =S
Then there exist d + 1 integers 1 < jy < --- < jg < m such that

A/o N (7A/1) n---N ((*1 )dA/d) 7& 0.

Generalization of the Borsuk-Ulam theorem.

If f is a continuous S — RY map, then there is x € S? such
that f(x) = f(—Xx).



Tucker’'s lemma

Lemma
Let T be a triangulation of the d-sphere S that is centrally
symmetric. Let A : V(T) — {£1,£2,...,£m} be a labeling
such that

e \(—Vv)=—=X\(v) forallve V()

o There are no edges uv of T such that A\(u) + A\(v) = 0.
Thenm>d+ 1.



Octahedral Ky Fan lemma

Lemma
Let \: {+,—,0}"\ {0} — {£1,...,£m} s.t.
o \(—X) = —\(x) for every x
o \(X)+ Ay)#Oforeveryx <y
Then there is at least one positively alternating n-chain.

Positively alternating n-chain: x' < --- < x” with

M X == (D"l and A< i <fp <o <.

x=(X,.... %) 2Y=W1,...,¥n) it X#£0=y=x



Proof
*x {+,—,0}"\ {0} is in one-to-one correspondence with the
vertices of sd(oO").
* Chains correspond to simplices.

* Apply the combinatorial Ky Fan’s theorem.

(=0,4)

0,0)

(+,0,-)



Octahedral Tucker lemma

Lemma

LetX: {+,—,0}"\ {0} — {£1,...,£m} s.t.
o \(—Xx) = —\(x) for every x
e \(X)+ A(y)#Oforeveryx <y

Then m > n.

X =(x,..., Xm) 2Y =, ym) if X #0=yi=x



Application: Combinatorial proof of the
Lovasz-Kneser theorem



Kneser graphs

n, k two integers s.t. n > 2k.

Kneser graph KG(n, k):

V(KG(n, k) = ()

E(KG(n, k) = {AB: A.Be (i), AnB=0}



Lovasz-Kneser theorem

Theorem
X(KG(n, k) =n—2k + 2.

Original proof by Lovasz in 1979, using algebraic topology.

x(KG(n, k)) < n— 2k + 2 (easy: explicit coloring).

Matousek proposed in 2003 a combinatorial (yet still topological) proof.



Matousek’s proof

¢ : (M) — [t] proper coloring of KG(n, k) with ¢ colors.

* Extension for any U C [n]: ¢(U) = max{c(A): AC U, |Al = k}.

xxt={i: x=+}andx ={i: xi=-}
|x| if |x| <2k —2, min(x™) < min(x~)
—|x| if |x| <2k —2, min(x~) < min(x™)
* A(x) =

c(xT)+2k—-2 if|x|>2k—1,c(x")>c(x7)
—c(x7)—2k+2 if|x]>2k—1,¢c(x") > c(x™)



Use the octahedral Tucker lemma

Apply the following lemma with m =t + 2k — 2.

Lemma
Let\: {+,—,0}"\ {0} — {£1,...,£m} s.t.
o \(—x) = —\(x) for every x
e \(X)+\(y)#Oforeveryx <y
Thenm > n.

We have thus t > n — 2k + 2, as required.



Zig-zag theorem

Replace Tucker by Ky Fan (existence of the alternating chain), and
get more.

Let K;,q denote the complete bipartite graph with g vertices on each
side.
Theorem (Simonyi-Tardos 2006)

Suppose KG(n, k) be colored properly with t colors. Then it
contains a colorful copy of KL n-2ki? | [n-2ki2] such that the colors

alternate on both side.

Let Kg 4 = Kq.q \ M, where M is a perfect matching.

Theorem (Chen 2010)
Suppose KG(n, k) be colored properly with n — 2k + 2 colors.
Then it contains a colorful copy of KJ 5.0 oo



Homomorphism of Kneser graphs

Let G and H be two graphs.
f: V(G) — V(H) is a graph homomorphism if f(u)f(v) € E(H)
whenever uv € E(G).

Conjecture (Stahl 1976)
There exists a graph homomorphism KG(n, k) — KG(r', k') if
and only if ¥ > gn — 2¢, where k' = gk — ¢.

Existence of a graph homomorphism KG(n, k) — KG(n— 2,k —1):
proved by Stahl in 1976. Case n=2k + 1 and ' = 2k’ + 1: also
proved by Stahl in 1996.



Generalization: Kneser hypergraphs

n, k, r three integers s.t. n > rk.
Kneser hypergraph KG'(n, k):

V(KG'(n, k)) = (7

E(KG'(m, k)) = {{A1,...,A,} Ae (M), AnA=0fori 7&/}



Chromatic number

Theorem (Alon-Frankl-Lovasz theorem)

m—r(£—1)"

ke (m. ) = | M=

All proofs:
e if true for ry and r», then true for rqr>.
e true when r is prime.

Original proof for the case r prime: similar as for Lovasz-Kneser theorem, with deepest
algebraic topology .



A combinatorial proof
Ziegler (2003) proposed a combinatorial proof via a Z,-Tucker’s
lemma.

Assume p prime and KGP(m, ¢) properly colored with t colors.
Zp = pth roots of unity
With the help of coloring, build a map

At (ZoUu{OD)™\{0} —  Zyx[t+pt—2]

x — (s(x),  v(x) )
~~ ~—~
sign absolute value

satisfying condition of a “Zp-Tucker” lemma

o MNwx) =wA(x)forwe Zp

e condition on {\(x"),..., A\(xP)} when x! < -.. < xP.
Second point satisfied by coloring condition: no p adjacent vertices get the same color.
Thus, (p—1)(t—1)+plt—1>m,i.e.

m—p(¢—1)

t>
2 p—1




Application: the splitting necklace theorem



Two thieves and a necklace

n beads, t types of beads, a; (even) beads of each type.
Two thieves: Alice and Bob.

Beads fixed on the string.

- eo00000000000O

Fair splitting = each thief gets a;/2 beads of type i



The splitting necklace theorem

Theorem (Alon, Goldberg, West, 1985-1986)
There is a fair splitting of the necklace with at most t cuts.



tis tight

t cuts are sometimes necessary:



Palvolgyi’s proof

* define alt(x) to be the number of sign changes when reading
x € {+,—,0}" from left to right (0 doesn’t count).

* define h(x) to be max{alt(y) : y > x}.

* define s(x) to be the first component of y realizing the maximum
(well-defined!).

s(x)h(x) if h(x) >t

+i if h(x) < t and Alice gets > a;/2 beads of type i

FAX) = -i if h(x) < t and Bob gets > a;/2 beads of type i

and choose the smallest such i



Use the octahedral Tucker lemma

Apply the following lemma with m = n — 1 (maximum possible
number of sign changes in a y).

Lemma
LetX: {+,—,0}"\ {0} — {£1,....,£m} s.t.
o \(—X) = —\(x) for every x
o \(X)+\y)#Oforeveryx <y
Thenm > n.

Contradiction. Such a )\ doesn’t exist.

— Existence of x with h(x) < f s.t. both Alice and Bob get < a,/2
beads of type i, Vi.

— Existence of y = x providing a fair splitting.



Open questions

* |s there an elementary proof of the splitting necklace
theorem?

* What is the complexity of computing a fair splitting?



Generalization

q thieves.

Fair splitting = each thief gets a;/q beads of type i

Theorem (Alon 1987)

There is a fair splitting of the necklace with at most (q — 1)t
cuts.



Open questions

= Is there a combinatorial proof using the Z,-Tucker lemma?

* |s there an elementary proof of the splitting necklace
theorem?

* What is the complexity of computing a fair splitting?



