Ky Fan Combinatorial Theorem and applications

Frédéric Meunier

June 30th, 2015

CERMICS, Optimisation et Systèmes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ky Fan's combinatorial theorem and three applications:

- 1. Covering of the sphere.
- 2. Coloring of Kneser graphs.
- 3. Splitting necklaces.

Combinatorial Ky Fan's theorem

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Figure: Ky Fan, 1914–2010

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Simplex

A simplex is the convex hull of affinely independent points.

Triangle

Etc.

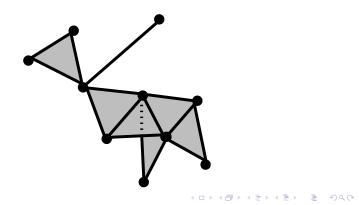
Tetrahedron

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Simplicial complex

K is a simplicial complex if it is a collection of simplices such that

- if τ is a face of $\sigma \in K$, then $\tau \in K$.
- the intersection of any two simplices is either empty or a face of both.



Alternating simplices

Let K be a simplicial complex and let $\lambda : V(K) \rightarrow \{\pm 1, \pm 2, \dots, \pm m\}.$

d-simplex σ is positively alternating if

 $\lambda(V(\sigma))$ of the form $\{j_0, -j_1, \ldots, (-1)^d j_d\}$ with $1 \leq j_0 < j_1 < \cdots < j_d$

(日) (日) (日) (日) (日) (日) (日)

Combinatorial Ky Fan's theorem

Theorem

Let T be a triangulation of the d-sphere S^d that is centrally symmetric. Let $\lambda : V(T) \rightarrow \{\pm 1, \pm 2, \dots, \pm m\}$ be a labeling such that

•
$$\lambda(-v) = -\lambda(v)$$
 for all $v \in V(\mathsf{T})$

• There are no edges uv of T such that $\lambda(u) + \lambda(v) = 0$.

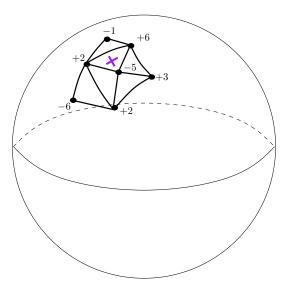
Then there is at least one positively alternating d-simplex.

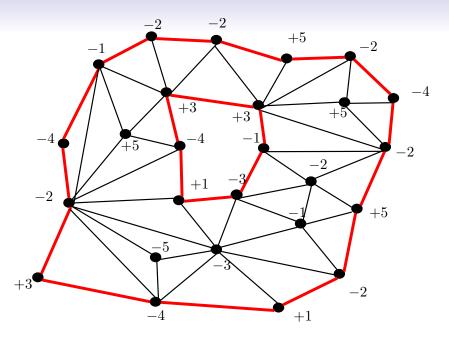
d-simplex is positively alternating if

$$\lambda(V(\sigma))$$
 of the form $\{j_0, -j_1, \ldots, (-1)^d j_d\}$ with $1 \leq j_0 < j_1 < \cdots < j_d$

(日) (日) (日) (日) (日) (日) (日)

Combinatorial Ky Fan's theorem





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Combinatorial Stokes formula

 $\beta^{-}(K)$: # negatively

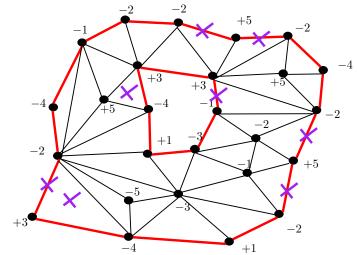
alternating triangles $\beta^+(K)$: # positively

alternating triangles

 $\beta^{-}(\partial K)$: # negatively

alternating edges on

the boundary



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $\beta^{-}(\mathsf{K}) + \beta^{+}(\mathsf{K}) = \beta^{-}(\partial\mathsf{K}) \mod 2.$

Combinatorial Stokes formula

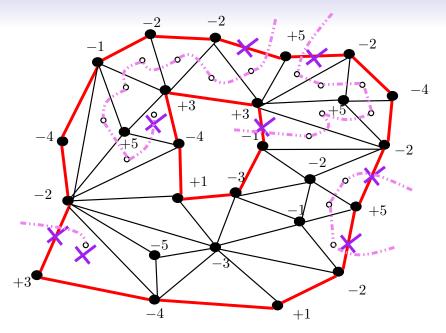
K pseudomanifold of dimension *d*.

Let $\lambda : V(K) \rightarrow \{\pm 1, \pm 2, \dots, \pm m\}$ be s.t. there are no edges uv of K with $\lambda(u) + \lambda(v) = 0$.

 $\beta^{-}(K)$: number of negatively alternating *d*-simplices $\beta^{+}(K)$: number of positively alternating *d*-simplices $\beta^{-}(\partial K)$: number of negatively alternating (d - 1)-simplices on the boundary

$$\beta^{-}(\mathsf{K}) + \beta^{+}(\mathsf{K}) = \beta^{-}(\partial\mathsf{K}) \mod 2$$

(日) (日) (日) (日) (日) (日) (日)



Combinatorial Ky Fan's theorem

Theorem

Let T be a triangulation of the d-sphere S^d that is centrally symmetric. Let $\lambda : V(T) \rightarrow \{\pm 1, \pm 2, \dots, \pm m\}$ be a labeling such that

- $\lambda(-v) = -\lambda(v)$ for all $v \in V(\mathsf{T})$
- There are no edges uv of T such that $\lambda(u) + \lambda(v) = 0$.

(日) (日) (日) (日) (日) (日) (日)

Then there is at least one positively alternating d-simplex.

Application in topology

Theorem

Let A_1, \ldots, A_m be m closed subsets of S^d satisfying the following conditions:

None of them contain antipodal points.

•
$$\bigcup_{i=1}^m (A_i \cup (-A_i)) = S^d$$
.

Then there exist d + 1 integers $1 \le j_0 < \cdots < j_d \le m$ such that

$$A_{j_0} \cap (-A_{j_1}) \cap \cdots \cap ((-1)^d A_{j_d}) \neq \emptyset.$$

Generalization of the Borsuk-Ulam theorem.

If f is a continuous $S^d \to \mathbb{R}^d$ map, then there is $\mathbf{x} \in S^d$ such that $f(\mathbf{x}) = f(-\mathbf{x})$.

Tucker's lemma

Lemma

Let T be a triangulation of the d-sphere S^d that is centrally symmetric. Let $\lambda : V(T) \rightarrow \{\pm 1, \pm 2, \dots, \pm m\}$ be a labeling such that

- $\lambda(-v) = -\lambda(v)$ for all $v \in V(\mathsf{T})$
- There are no edges uv of T such that $\lambda(u) + \lambda(v) = 0$. Then $m \ge d + 1$.

(日) (日) (日) (日) (日) (日) (日)

Octahedral Ky Fan lemma

Lemma
Let
$$\lambda : \{+, -, 0\}^n \setminus \{\mathbf{0}\} \rightarrow \{\pm 1, \dots, \pm m\}$$
 s.t.
• $\lambda(-\mathbf{x}) = -\lambda(\mathbf{x})$ for every \mathbf{x}
• $\lambda(\mathbf{x}) + \lambda(\mathbf{y}) \neq 0$ for every $\mathbf{x} \preceq \mathbf{y}$

Then there is at least one positively alternating n-chain.

Positively alternating *n*-chain: $\mathbf{x}^1 \leq \cdots \leq \mathbf{x}^n$ with

$$\lambda(\{\boldsymbol{x}^1, \dots, \boldsymbol{x}^n\}) = \{j_1, -j_2, \dots, (-1)^{n-1}j_n\} \text{ and } 1 \le j_1 < j_2 < \dots < j_n.$$

$$\mathbf{x} = (x_1, \ldots, x_n) \preceq \mathbf{y} = (y_1, \ldots, y_n)$$
 if $x_i \neq 0 \Rightarrow y_i = x_i$

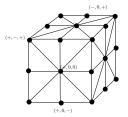
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof

* $\{+, -, 0\}^n \setminus \{\mathbf{0}\}$ is in one-to-one correspondence with the vertices of sd $(\partial \Box^n)$.

* Chains correspond to simplices.

* Apply the combinatorial Ky Fan's theorem.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Octahedral Tucker lemma

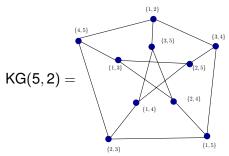
Lemma
Let
$$\lambda : \{+, -, 0\}^n \setminus \{\mathbf{0}\} \rightarrow \{\pm 1, \dots, \pm m\}$$
 s.t.
• $\lambda(-\mathbf{x}) = -\lambda(\mathbf{x})$ for every \mathbf{x}
• $\lambda(\mathbf{x}) + \lambda(\mathbf{y}) \neq 0$ for every $\mathbf{x} \preceq \mathbf{y}$
Then $m \ge n$.

$$\boldsymbol{x} = (x_1, \ldots, x_m) \preceq \boldsymbol{y} = (y_1, \ldots, y_m) \quad \text{if} \quad x_i \neq 0 \Rightarrow y_i = x_i$$

Application: Combinatorial proof of the Lovász-Kneser theorem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Kneser graphs



<ロ> (四) (四) (三) (三) (三) (三)

n, k two integers s.t. $n \ge 2k$.

Kneser graph KG(n, k):

$$V(\mathsf{KG}(n,k)) = {\binom{[n]}{k}}$$
$$E(\mathsf{KG}(n,k)) = \left\{ AB : A, B \in {\binom{[n]}{k}}, \ A \cap B = \emptyset \right\}$$

Lovász-Kneser theorem

Theorem
$$\chi(\mathrm{KG}(n,k)) = n - 2k + 2.$$

Original proof by Lovász in 1979, using algebraic topology.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\chi(\text{KG}(n,k)) \leq n - 2k + 2$ (easy: explicit coloring).

Matoušek proposed in 2003 a combinatorial (yet still topological) proof.

Matoušek's proof

★ $c: \binom{[n]}{k} \rightarrow [t]$ proper coloring of KG(n, k) with t colors.

★ Extension for any $U \subseteq [n]$: $c(U) = \max\{c(A) : A \subseteq U, |A| = k\}$.

★
$$\mathbf{x}^+ = \{i : x_i = +\}$$
 and $\mathbf{x}^- = \{i : x_i = -\}$

$$\star \lambda(\mathbf{x}) = \begin{cases} |\mathbf{x}| & \text{if } |\mathbf{x}| \le 2k - 2, \min(\mathbf{x}^+) < \min(\mathbf{x}^-) \\ -|\mathbf{x}| & \text{if } |\mathbf{x}| \le 2k - 2, \min(\mathbf{x}^-) < \min(\mathbf{x}^+) \\ c(\mathbf{x}^+) + 2k - 2 & \text{if } |\mathbf{x}| \ge 2k - 1, c(\mathbf{x}^+) > c(\mathbf{x}^-) \\ -c(\mathbf{x}^-) - 2k + 2 & \text{if } |\mathbf{x}| \ge 2k - 1, c(\mathbf{x}^-) > c(\mathbf{x}^+) \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Use the octahedral Tucker lemma

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Apply the following lemma with m = t + 2k - 2.

Lemma
Let
$$\lambda : \{+, -, 0\}^n \setminus \{\mathbf{0}\} \rightarrow \{\pm 1, \dots, \pm m\}$$
 s.t.
• $\lambda(-\mathbf{x}) = -\lambda(\mathbf{x})$ for every \mathbf{x}
• $\lambda(\mathbf{x}) + \lambda(\mathbf{y}) \neq 0$ for every $\mathbf{x} \preceq \mathbf{y}$
Then $m \ge n$.

We have thus $t \ge n - 2k + 2$, as required.

Zig-zag theorem

Replace Tucker by Ky Fan (existence of the alternating chain), and get more.

Let $K_{q,q}$ denote the complete bipartite graph with q vertices on each side.

Theorem (Simonyi-Tardos 2006)

Suppose KG(*n*, *k*) be colored properly with *t* colors. Then it contains a colorful copy of $K_{\lfloor \frac{n-2k+2}{2} \rfloor, \lceil \frac{n-2k+2}{2} \rceil}$ such that the colors alternate on both side.

Let $K_{q,q}^* = K_{q,q} \setminus M$, where *M* is a perfect matching.

Theorem (Chen 2010)

Suppose KG(*n*, *k*) be colored properly with n - 2k + 2 colors. Then it contains a colorful copy of $K_{n-2k+2,n-2k+2}^*$.

Homomorphism of Kneser graphs

Let *G* and *H* be two graphs.

 $f: V(G) \rightarrow V(H)$ is a graph homomorphism if $f(u)f(v) \in E(H)$ whenever $uv \in E(G)$.

Conjecture (Stahl 1976)

There exists a graph homomorphism $KG(n, k) \rightarrow KG(n', k')$ if and only if $n' \ge qn - 2\ell$, where $k' = qk - \ell$.

Existence of a graph homomorphism $KG(n, k) \rightarrow KG(n-2, k-1)$: proved by Stahl in 1976. Case n = 2k + 1 and n' = 2k' + 1: also proved by Stahl in 1996.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Generalization: Kneser hypergraphs

n, k, r three integers s.t. $n \ge rk$.

Kneser hypergraph $KG^{r}(n, k)$:

$$V(\mathsf{KG}^{r}(n,k)) = {\binom{[n]}{k}}$$
$$E(\mathsf{KG}^{r}(m,k)) = \left\{ \{A_{1},\ldots,A_{r}\} : A_{i} \in {\binom{[n]}{k}}, \ A_{i} \cap A_{j} = \emptyset \text{ for } i \neq j \right\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Chromatic number

Theorem (Alon-Frankl-Lovász theorem)

$$\chi(\mathsf{KG}^{r}(m,\ell)) = \left\lceil \frac{m-r(\ell-1)}{r-1} \right\rceil$$

All proofs:

- if true for r_1 and r_2 , then true for r_1r_2 .
- true when r is prime.

Original proof for the case *r* prime: similar as for Lovász-Kneser theorem, with deepest algebraic topology.

(日) (日) (日) (日) (日) (日) (日)

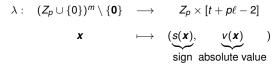
A combinatorial proof

Ziegler (2003) proposed a combinatorial proof via a Z_p -Tucker's lemma.

Assume *p* prime and $KG^{p}(m, \ell)$ properly colored with *t* colors.

 $Z_p = p$ th roots of unity

With the help of coloring, build a map



satisfying condition of a " Z_p -Tucker" lemma

•
$$\lambda(\omega \boldsymbol{x}) = \omega \lambda(\boldsymbol{x})$$
 for $\omega \in Z_p$

• condition on $\{\lambda(\boldsymbol{x}^1), \ldots, \lambda(\boldsymbol{x}^p)\}$ when $\boldsymbol{x}^1 \preceq \cdots \preceq \boldsymbol{x}^p$.

Second point satisfied by coloring condition: no *p* adjacent vertices get the same color. Thus, $(p-1)(t-1) + p\ell - 1 \ge m$, i.e.

$$t \geq \frac{m - p(\ell - 1)}{p - 1}$$

Application: the splitting necklace theorem

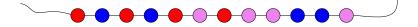
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Two thieves and a necklace

n beads, *t* types of beads, a_i (even) beads of each type.

Two thieves: Alice and Bob.

Beads fixed on the string.



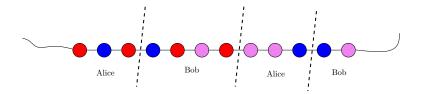
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fair splitting = each thief gets $a_i/2$ beads of type *i*

The splitting necklace theorem

Theorem (Alon, Goldberg, West, 1985-1986)

There is a fair splitting of the necklace with at most t cuts.



・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

t is tight

t cuts are sometimes necessary:

Pálvölgyi's proof

* define $alt(\mathbf{x})$ to be the number of sign changes when reading $\mathbf{x} \in \{+, -, 0\}^n$ from left to right (0 doesn't count).

★ define $h(\mathbf{x})$ to be max{alt(\mathbf{y}) : $\mathbf{y} \succeq \mathbf{x}$ }.

* define $s(\mathbf{x})$ to be the first component of \mathbf{y} realizing the maximum (well-defined!).

$$\star \lambda(\mathbf{x}) = \begin{cases} s(\mathbf{x})h(\mathbf{x}) & \text{if } h(\mathbf{x}) > t \\ +i & \text{if } h(\mathbf{x}) \le t \text{ and Alice gets} > a_i/2 \text{ beads of type } i \\ -i & \text{if } h(\mathbf{x}) \le t \text{ and Bob gets} > a_i/2 \text{ beads of type } i \\ & \text{and choose the smallest such } i \end{cases}$$

Use the octahedral Tucker lemma

Apply the following lemma with m = n - 1 (maximum possible number of sign changes in a **y**).

Lemma

Let $\lambda : \{+, -, 0\}^n \setminus \{\mathbf{0}\} \rightarrow \{\pm 1, \dots, \pm m\}$ s.t.

•
$$\lambda(-{m x})=-\lambda({m x})$$
 for every ${m x}$

•
$$\lambda(\boldsymbol{x}) + \lambda(\boldsymbol{y}) \neq 0$$
 for every $\boldsymbol{x} \preceq \boldsymbol{y}$

Then $m \ge n$.

Contradiction. Such a λ doesn't exist.

⇒ Existence of **x** with $h(\mathbf{x}) \le t$ s.t. both Alice and Bob get $\le a_i/2$ beads of type *i*, $\forall i$.

 \implies Existence of $y \succeq x$ providing a fair splitting.

 \star Is there an elementary proof of the splitting necklace theorem?

* What is the complexity of computing a fair splitting?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generalization

q thieves.

Fair splitting = each thief gets a_i/q beads of type *i*

Theorem (Alon 1987)

There is a fair splitting of the necklace with at most (q - 1)t cuts.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \star Is there a combinatorial proof using the Z_{ρ} -Tucker lemma?

★ Is there an elementary proof of the splitting necklace theorem?

* What is the complexity of computing a fair splitting?

(日) (日) (日) (日) (日) (日) (日)